
Journal of Engineering Physics and Thermophysics, VoL 70, No. 5, 1997 

R A Y L E I G H  N U M B E R S  F O R  C R I T I C A L  I N S T A B I L I T Y  

L E V E L S  I N  T H E  C A S E  O F  I S O T H E R M A L  T H R E E -  

C O M P O N E N T  D I F F U S I O N  I N  A C Y L I N D R I C A L  
C H A N N E L  

V. N. Kosov, S. M. Belov, and 
Yu. I. Zhavrin 

UDC 533.15:536.25 

Within linear analysis of stability, a relation of wave numbers (perturbation modes) that determine various 

kinds of convective flows in a cylindrical channel with Reyleigh numbers is found for ideal three-component 
gas mixtures. 

hatroduction. Diverse convective forms of motion induced by a temperature gradient manifest themselves 
in numerous natural phenomena and in various kinds of chemical engineering processes. The main feature of free 

convection are described rather thoroughly for the case of a single-component liquid [1, 2 ]. In spite of the long 

history of research in this phenomenon (for example, see [3, 41), it is still one of the most urgent and complicated 

problems of contemporary physics of continua that at present still attract the attention of experimentors and 
theoreticians [5-7 ]. 

Description of existing convection modes in which arising turbulent structures dominate is difficult in itself. 

The situation becomes much more complicated in studies of multicomponent media in which diffusion is of basic 
importance. The classic experiment with Benard convection cells in a single-component homophase medium (liquid) 
distinctly showed one of the key difficulties in studies of the effect. On the one hand, there exists high 

reproducibility of cellular structures that are governed by certain periodic laws; on the other, in the case of 

convective motion forms occurring in the gravity field (for example, rotation), a structured liquid material disturbs 

this periodicity and the process becomes almost stochastic [8, 9 ]. In this case dualism of the laws governing the 

appearance and existence of Benard cells is exhibited quite clearly. This specific form of ordering (self-organization) 

of the system occurring far from equilibrium gives rise to a new physical system, a dissipative structure that in its 

evolution is characterized by certain forms of disturbance of symmetry, which is reflected in the presence of 
bifurcations [9, 101. 

A similar approach can be also applied to the study of diffusion mass transfer in multicomponent gas 
mixtures. In the limiting isothermal case for some of them, due to differences in the diffusion coefficients of the 

component (provided satisfaction of certain parameters such as pressure, temperature, initial composition of the 

mixture, etc.), conditions appear for the existence of concentration-induced convection caused by Archimedean 
forces [11, 12 ]. The structural form of convective flows of components in the mixture is very complicated and 

unpredictible, which is revealed by multiple visual and katharometric studies [l l, 13 ]. Determination of relations 

governing their appearance seems important even in a linear approximation by introduction of the number of 

structural components (periodicity numbers) [14 ]. In the present work, within linear stability theory, a relation is 

found between diffusion Raylaigh numbers and periodicity numbers whose values simulate a broad diversity of 

structural forms of motion in a cylindrical channel, both along and across it. 

Linear Stability Analysis. At a constant pressure under isothermal conditions, the state of an ideal three- 
component gas mixture is described by the system of equations [ t 41: 
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p + (uV) = - V p +  + p g y ,  div(pu) = 0 ;  
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(i)  

With the condition of independent diffusion and the imposed constraints 

3 3 
EJ~ =o, Z ~---J, 
i=l i=1 

and in view of the smallness of the diffusion cross-coefficients in comparison with the diagonal ones Di] << Dii [15 ], 

the system of equations (1) is transformed as follows 

Oc I OC 2 
0---t" + uVcl = DIV2Cl ' Ot + uVc2 = D2V2c2 ' 

0 U + ( u V )  u = _  l _ _ v p + v V 2 u +  Y, Ot Po vp o 

(2) 

where Di is the partial diffusion coefficient (PDC) of the i-th component. Equations (2) are linearized in a 

Boussinesq approximation [1, 14] with the use of perturbations for the following quantities: ci = COl + c}, p = 

P0 + P', where COl and P0 are constant average values taken as a reference point. The perturbed quantities c} and 

p' are small, and deviations of the density p'  induced by them are insignificant in comparison with the average Po. 

The equation of state has the form 

( ll 'l, 
t 9 =DO l -- i=l fliCi , fli = - - - p  OC i p,T 

3 i 

X fli Cl = ~3' fli Ci + ~3j ~j C] ~3i 1 f13 ~C03 ' = - ~ - - = l - 3 c 0 - - ' l " i i  i = l , 2 ,  
i=l 

(3) 

where c~coi is the concentration difference of the i- th component. 

Having made Eqs. (2) and (3) dimensionless relative to the scale of length d, time d 2 / v ,  velocity D i / d  , 

concentration Bid,  p r e s s u r e p o v D i / d  2, after some manipulations, neglecting values of the second order of smallness, 

we obtain the equations for perturbations (primes are omitted) 

OU 
Ot - - - -  -- Vp + V2u + (RlCl + R2C2) y ,  Ri : Ti~3iRi '  

Oc i 1 
ot (u y) = ~ v2r 

(4) 

We introduce cylindrical coordinates (r, ~o, z) with the axis z directed upward along the cylindrical axis. 

Then, in the steady-state case, system of equations (4) becomes 

Au + RlCl + R2c2 = O, P~i Aci + u = O, 

d A 1 O 1 02 d 2 O 2 
A = Or 2 + - - -  + - - - - - ~  + r Or r 2 d~o Oz 2 '  

(5) 
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where d = r / L  is the inverse of the diameter; r and L are the radius and length of the cylinder, respectively. 

Boundary conditions are 

Ou OCi 0 at r = 1 
Or Or 

Ou Oc i 
- - 0  a t  z = _ + l ,  

Oz Oz 

(6) 

u and c i are finite values at r = z = 0 and arbitrary 9'. 

A solution of (5) will be sought in the form: 

u (r, ~o, z) = U (r) cos (n~o) ch ( j m ~ z ) ,  

c i (r, ~o, z) = C i (r) cos (n~o) sin (m~z) ,  j = q - 1 , 

(7) 

where fJ(r) and Ci(r) are arbitrary constants. Substituting (7) into (5), with (6) taken into consideration, we obtain 

the following system of equations 

A l U + R l C  1 + R 2 c  2 = 0 ,  A2c i + P r i u = O ,  

02 1 0 n 2 
A1 = Ar+)12 A2 = A r - j l 2  A r = - - +  2 s 

' Or  2 r Or  r 

(8) 

where )1 = nutd is the wave complex. Multiplying the equation for velocity in (8) by the operator A2 and using 

equations for concentrations with account of the fact that 

a l a 2  = (A r + )12) (A r _ )12) ----- ArAr - )14, 

we obtain the biharmonic equation in velocity 

g2u --- 0 ,  g 2 --- A r A r - )14 _ R1Prl - RxPr2 �9 (9) 

The general solution of (9) has the form 

u = a I Yn (Br) + a 2 I  n ( B r ) ,  (10) 

where Yn and I n are first-kind Bessel functions; Al and A 2 are constants; B is a constant depending on R. It should 

be noted that as in the case of a single-phase liquid (Ostroumov's problem [14], in the case of a diametrically 

antisymmetric structural mixture flow in the azimuth direction (n = 1), problem (9)-(10) gives the critical Rayleigh 

number 

R* = 67.95. (11) 

In (he present formulation for a three-component mixture, Eq. (11) has a slightly modified form 

R* =) l  4 + R1 Prl + R2 Pr2" 
(12) 

Using the conditions of closeness and independent diffusion, after some manipulations we obtain the partial critical 

Rayleigh number of the i-th component 
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Fig. 1. Plot  of cri t ical  Ray le igh  number  versus concent ra t ion  of heavy  

component in mixture. Systems: 1) He + At" - N2, 2) H2 + CH4 - He, 3) 

H2 + R12 - Ar, lines: a) Ar and N2 for system 1, b) CH 4 and He for system 

2; c) R12 and Ar for 3, d) of equal density for systems presented; 11, 12, 21, 

22, 31, 32) of diffusion and diffusion mixing, respectively, p = 0.I MPa, T = 

298 K, L = 7" 10 -2  m, d -- 4- 10 -3 m. ci, mole fractions. 

67.95 - m44d4 (SCoi (13) 
R / =  ( r i _  l l , a q -  ~Co . 

ri [~ai Pri - ~3j Prj~ l [r 7 - 1) 

of boundary-value stability problem (6)-(13) for ideal isothermal three-component gas mixtures. First of all, we 

failed to reduce the problem to one integral concentration Rayleigh number. For each of the components,  its own 

critical Rayleigh number  is obtained with a different behavior as a function of thermodynamic quantities, which 

suggests s t ructured properties of the hydrodynamic flows of each of the components. As the equation contains two 

periodicity numbers  (in the asimuthal n and vertical m directions), it is possible to model a flow profile that  can 

be identified with the number  of convective structures that are formed in a cylindrical channel.  Comparing the 

Rayleigh numbers  of the components at different m and n (the other  parameters are invariable), we easily obtain 

the following dependence 

ml 2r 1 

m2 - 2r 2 , 

which shows that the larger the diameter  of the diffusion channel, the smaller the number  of structured elements 

that form the flow along the vertical of the cylinder required for realization of convective mass transfer.  As the 

diameter  decreases, the density of the number of structures increases relative to ~he cross-section of the channel,  

and when the diameter  is lower than the threshold value, development of perturbations in the system is impossible, 

which leads to stable diffusion transfer. 

Now, we characterize the nature of convective flow in accordance with equation (13) with the following 

e x p e r i m e n t a l  idea l  gas m i x t u r e s  s tud ied  as examples :  H2 + CH 4 - He, He + Ar - N2, H2 + R12 - Ar, 

He + R12 - Ar, CH 4 + Ar - N2 [5, 16, 17 I. In the first four systems, in the order  of increasing ratios of molecular 
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Fig. 2. Plot of critical Rayleigh number versus concentration of CO2 in mixture 

for system Call 8 + CO2 - N20: a) line of equal density; 1 and 2) regions of 

diffusion and diffusion mixing, respectively, p = 0.1 MPa, T = 298 K, L = 

7" 10 - 2  m,  d = 4 . 1 0  - 3  m. 

Fig. 3. Critical Rayleigh numbers of components with different perturbation 

modes. Systems: I) 0.5He + 0.5Ar - N2; 2) 0.9H2 + 0.1CH4 - He; 3) 

0.9CH 4 + 0.1At - N2. p = 0.1 MPa, T = 298 K, L = 7-10 -2 m, d = 2r = 

4.10 -a  m. 

masses in the binary systems, diffusion instability is observed at a certain percentage of the heaviest component. 

However, the conditions of unstable diffusion transfer are different in different systems (see Fig. 1). 

For the system H2 + CH4 - He, typical concentrations are found, at which critical Rayleigh numbers of 

the components are maximal (minimal), which suggests a change of instability forms. At a low ("trace") content of 

methane in the mixture (up to 0.1 mole fraction) ordinary diffusion of hydrogen into helium is observed, which is 

indicated by relative growth of the critical Rayleigh number for the heaviest component in the mixture. A further 

increase in its concentration results in diffusion mixing, which can be inferred from a decrease in the critical 

Rayleigh number R. Starting from CCH 4 ---= 0 .7  mole fraction, light (the most mobile) components of the mixture 

make the main contribution to development of instability, resulting in a decrease in the critical Rayleigh number 

to its value for helium. For the system He + Ar - N2, as the concentration of argon in the mixture increases, its 

critical Rayleigh number is found to decrease, which indicates an increase in the intensity of the unsteady process 

(which was shown experimentally in [ 11 ]). However, relative to nitrogen, the system is stabilized to some extent 

(since DN2_Ar < DN2_He) and the unstable process induced by the action of Archimedian forces can appear at a 

certain percentage of argon in the three-component system. For the mixture H2 + R12 - At-, critical Rayleigh 

numbers of the main diffusing components remain almost invariable (the slight trend of increasing RAt and 

decreasing R12 can be explained by reasons similar to those suggested for the previous mixture). Meanwhile, in 

the diffusion region, for these gases the Rayleigh numbers are much lower (0.2< RAr, RR12 < 2.8) as compared 

with the previous systems. This indicates that the mixtures that contain R 12 are potentially the most "unstable," 

if we compare, for example, the experimental data of [18] and [11, 16 ]. For the systems CH4 + Ar - N2 and 

C3H8 + CO2 - N20 (Fig. 2), the PDC of the components are comparable with each other, and the critical Rayleigh 

numbers are almost invariable in the diffusion region, which suggests the absence of changes of regimes. This is 

also confirmed by experimental data of [ 17 ], which do not show concentration-induced convection. 

In [14 ] it is found that the wave numbers (perturbation modes) that determine the flow patterns and the 

critical Rayleigh number for the case of heat convection are interrelated. A similar situation is found for diffusion 

instability. An increase in the wave number leads to a decrease in the critical Rayleigh number for all components 

involved in the transfer (Fig. 3). This can be explained as follows. Penetrating concentration perturbations expand 

the regions of their "existence" and involve more and more of the ambient gas mixture in convective flows, which 

results in an increase in the intensity of unstable transfer. For systems in which the PDC of the components are 

comparable with each other, conditions can be selected (for example, geometrical dimensions of the diffusion 

channel) under which an increase in the wave number has almost no effect on the behavior of the critical Rayleigh 
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number. In such cases, it is likely that transition from the stability state to the state of diffusion instability is 
impossible. 

Thus, with the present model for various wave numbers it is possible to determine the range of critical 
Rayleigh numbers that characterize the region of stable (unstable) diffusion and to demonstrate the diversity of 
convective forms of motion that can be realized in a cylindrical channel in the case of unstable mass transfer in 
isothermal three-component gas mixtures. 

N O T A T I O N  

u, convection rate; p, pressure; Pi,  P,  density of i-th component and density of mixture; r/, v, dynamic and 
kinematic viscosities of mixture; ci, molecular concentration of i-th component; Di,j,  diffusion coefficients; g, 

gravitational acceleration; 7, upward vertical unit vector; D i, partial diffusion coefficient; Pr i ffi v / D i ,  diffusion 
Prandfl number o f / - th  component; R i = gf l iBir4/Dl~,  diffusion Rayleigh number of i-th component; r i ffi D i / D  3, 

parameter that characterizes ratio of diffusion coefficients; n, periodicity number in asimuthal direction; m, peri- 

odicity number along vertical axis z. 
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